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Motivation 

•  There are differences between EU and US 
policy decisions regarding biofuels for aviation 

•  We are aiming to understand the differences 
in regulatory regimes and their execution, and 
to quantify how these differences lead to 
differences in the evaluation of different 
biofuels under these regimes 
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Context 

•  Previous work on policy/regulatory scheme 
comparisons: 

•  Argonne National Lab 

•  (S&T)2 Consultants 

•  Life cycle associates 

•  … 

•  This analysis is the first to quantitatively 
disentangle differences in GHG emission results 
between US and EU for pathways particularly 
relevant to alternative jet fuel 

•  The purpose is to engender discussion on the 
prospects for harmonizing regulatory attitudes 
towards alternative jet between the US and EU 
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Technical Issues with LCA 

Modeling framework: 

•  Consequential vs. 
attributional 

•  US EPA: DAYCENT, 
GREET, FASOM & FAPRI-
CARD 

•  EU: JRC WTW, BioGrace, 
& feedstock sustainability 
certification 

Modeling decisions & inputs: 

•  Allocation methodology 
•  System boundary definition 
•  Data inputs 

•  Regional/geo-spatial 
assumptions 

•  References & databases 
used 

•  Technology development over 
time 
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US Federal Framework on biofuels: RFS 2 

Renewable Fuels Standard under the Energy Security and 
Independence Act of 2007 (RFS 2) 

•  Contains mandates for several renewable fuel categories with 
minimum GHG reductions relative to 2005 conventional gasoline 
and diesel emissions 
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RFS 2 
 

•  Company-specific renewable fuel volume obligations &  trading 
mechanism  

•  Compliance of fuel with RFS 2 determined by EPA based on 
lifecycle greenhouse gas emissions 

•  LUC emissions included 

•  Initial  2010 ruling: Full suite of models for certain pathways. 
Subsequent rulings: Based on comparative analyses of 
additional pathways to the original pathways 
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EU regulatory framework for biofuels  

•  Main legislation:  

•  Renewable Energy Directive “RED” (2009/28/EC) 

•  Fuel Quality Directive “FQD” (2009/30/EC) 

•  Target: 20% share of renewable energy in the EU by 
2020; 10% of transportation energy demand to come 
from renewable sources by 2020 (fuels from non-food 
biomass and waste oils count double), national targets 
in place as well. 

•  Achievement of the target is responsibility of the 
member states who are obliged to introduce support 
schemes and other measures to promote energy 
from renewable sources. 
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EU regulatory framework for biofuels  

•  Biofuel produced needs to be meet sustainability criteria, 
otherwise it does count towards the EU target and is not eligible 
for public support (biofuel mandates, tax breaks, subsidies) 
through the member states 

•  Sustainability has been defined in the EU legislation in terms of  

•  Lifecycle GHG emission reductions: 35%, will be increased to 
50% and 60%: Default values available, companies can show 
in certification that their pathway is better, emission 
accounting must include direct land-use change 

•  Land usage for biomass cultivation: Restrictions for, inter alia, 
use of wetland, forested areas, peatland, protected areas 
Feedstock needs to be certified  
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Select GHG estimates employed under EU regulation 

Table taken from RED and FQD 

Note: Values are without emissions from land-use change 
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Proposed regulatory EU framework for biofuels  
 

•  EU Commission proposal for RED/FQD revision: 

•  Limitation of contribution of biofuels from food crops to 5% 
of transportation energy demand 

•  Default values for ILUC GHG emissions: 
•  12 gCO2e/MJ for starchy crops 
•  13 gCO2e/MJ for sugars 
•  55 gCO2e/MJ for oily crops 

•  “Quadruple” counting (in addition to double-counting) for 
biofuels from low-ILUC feedstocks such as algae, straw, 
bagasse 

•  EU Commission “Policy framework for climate and 
energy” (January 22nd, 2014): Aims at implementing target for 
renewable energy usage of 27% by 2030, no dedicated target 
for biofuels 
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GREET modeling framework 

•  DOE EERE has been sponsoring GREET development and applications since 1995 

•  GREET is available at Argonne’s GREET website: greet.es.anl.gov  

•  A new GREET version (GREET1_2013) was released on Oct. 2013 
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GREET aviation module includes  
the following jet fuel pathways 

q Petroleum	
  Jet	
  Fuel	
  
Ø  Conven2onal	
  Crude	
  
Ø  Oil	
  Sand	
  

q Hydrotreated	
  Renewable	
  Jet	
  Fuel	
  
Ø  Soybeans	
  
Ø  Palm	
  Oil	
  
Ø  Rapeseeds	
  
Ø  Jatropha	
  
Ø  Camelina	
  
Ø  Algae	
  

q  Passenger	
  AircraA	
  
Ø  Single	
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  AircraA	
  
Ø  Single	
  Aisle	
  
Ø  Small	
  Twin	
  Aisle	
  
Ø  Large	
  Twin	
  Aisle	
  
Ø  Large	
  Quad	
  

q LCA	
  Func2onal	
  Units	
  
Ø  Per	
  MJ	
  of	
  fuel	
  
Ø  Per	
  kg-­‐km	
  
Ø  Per	
  passenger-­‐km	
  

Fuels	
  and	
  Feedstocks	
   AircraA	
  Types	
  
q Pyrolysis	
  Oil	
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Ø  Forest	
  Residues	
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  Energy	
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q Fischer-­‐Tropsch	
  Jet	
  Fuel	
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  American	
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  Gas	
  
Ø  Non-­‐North	
  American	
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Ø  Shale	
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  Gasifica2on	
  
Ø  Coal	
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  via	
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•  BIOfuel GReenhouse gas emissions: Alignment of 
Calculations in Europe  

•  Goal: Harmonization and standardization of GHG accounting 
for transportation fuels in the EU, avoidance of “cherry 
picking” by operators  

•  Freely available, Excel-based GHG calculation tool   

•  Covers 22 feedstock to fuel pathways, does not contain 
jet fuel specific calculations 

•  Can serve as part of fuel certification, needs to be 
supplemented by feedstock sustainability analysis 

BioGrace modeling framework 
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Scope of quantitative analysis 

•  Conventional fuel 

•  Rapeseed HEFA 

•  Soybean HEFA    

•  Camelina HEFA 

•  Tallow HEFA 

•  BTL from  
farmed wood &  
waste wood 
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Camelina HEFA jet 
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System boundaries: Tallow example 
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Tallow lifecycle GHG emission results 
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Conclusions (1 of 2) 

Decisions made within 
framework 

US EU 

Main focus GHG emissions 
GHG emissions+ feedstock 
sustainability 

Jet-fuel relevant emission 
reduction thresholds 

50%, 60% 
35% currently, will change to 
50%, 60%  

Eligibility scope 
Feedstock to fuel pathway 
approval 

Company & feedstock-specific fuel 
certification 

Allocation rules 
Energy (for RIN 
generating products),  
Displacement 

Energy (with exceptions) 

System boundary for land 
use change 

LUC in general Only DLUC (subject to revision) 

Consequences of eligibility  Access to RIN markets 
Access to support schemes by 
member states 
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Conclusions (2 of 2) 

•  Allocation rules (Energy vs. Displacement):  

 Δ 7-12 gCO2e/MJ for HEFA pathways – no impact on FT results since 

 no non-fuel co-products 

•  System boundaries, including land-use change:  

  Δ 55 gCO2e/MJ for camelina, if camelina becomes subject to ILUC 

 factor in EU (relevant for all oily crops) 

•  Agricultural inputs 

  Δ 2-9 gCO2e/MJ for HEFA pathways, 0.7 gCO2e/MJ for FT pathways

  

 BUT: Not all differences are indicative of a need for 
 harmonization (systematic vs. parametric differences) 

 

 

•  Differences in lifecycle results for pathways assessed due to: 
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