

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

# **Bioenergy Technologies Office: Technology Update and Investment Strategy**

Valerie Reed, Ph.D.

Director, Bioenergy Technologies Office

3/ZZ/22



Understanding Bioenergy and Its Decarbonization Potential

Biomass Feedstocks: Broad U.S. Potential

 State of the Bioenergy Industry Today and Our Strategy for Success

#### **Biomass: Nature's Carbon Removal Technology (for 3.4 Billion Years)**

- **Biomass** includes food waste, municipal solid waste, agricultural and forest wastes, animal wastes, and energy crops.
- **Bioenergy** is the conversion of biomass to energy that can replace fossil fuels.



**Bioeconomy:** An economy based on products, services, and processes derived from biological resources (e.g., plants and microorganisms) and encompassing multiple sectors.

Bioenergy is a key component of the U.S. bioeconomy and contributor to *decarbonizing transportation, industry, and agriculture*.

#### The Role of Biomass in Sustainable Transportation

- Transportation accounts for 34% of U.S. greenhouse gas (GHG) emissions.
- Biofuels are part of a sustainable transportation fuel strategy to decarbonize all modes.
- U.S. biomass can meet the needs of "hard to electrify" modes, such as aviation, marine and rail.

Focus areas for biofuels:

- Ethanol for passenger cars
- "Drop-in" fuels that can use existing infrastructure such as renewable diesel/sustainable aviation fuels



AEO = annual energy outlook | GGE = gasoline gallon equivalent | MSW = municipal solid waste

# **Sustainable Aviation Fuel (SAF) Grand Challenge**



## The Role of Biomass in Industry

- Chemical production accounts for 5.5% of U.S. GHG emissions.
- Biomass is the only renewable resource that can replace petroleum to make carbon-based chemicals.
- Biomass-derived chemicals could significantly reduce GHG emissions.

#### Focus areas

- Drop-in replacements for petro-chemicals
- Performance enhanced biochemicals
- Recyclable on demand



## The Role of Biomass in Agriculture

- Agriculture activities serve as sources and sinks for GHGs.
- Decarbonizing transportation/chemicals and decarbonizing agriculture are intrinsically linked.
- By developing tools and strategies to quantify and improve soil carbon sequestration and ecosystem services, we can produce biofuels with a lower carbon intensity.

Focus areas in agriculture:

- Maximize soil CO<sub>2</sub> sequestration by developing healthy, productive soils and regenerating distressed soil.
- Develop climate-smart ag practices.
- Produce clean energy on-site from animal waste.
- Develop wastewater treatment strategies that produce bioenergy feedstocks.



Argonne Final Report to ARPA-E (2019): Developing a Framework for Lifecycle Analysis of Biofuels on the Farm Level

#### **Benefits of a Bioeconomy**

#### Across the United States, a bioeconomy will:

- Create jobs in agriculture, waste management, transportation, manufacturing, construction
- Invest in communities and help manage waste disposal, creating new revenue streams
- Reduce methane emissions associated with waste disposal
- Produce clean water and reduce fertilizer use in agriculture
- Achieve lasting carbon reductions across the U.S. economy



Understanding Bioenergy and Its Decarbonization Potential

Biomass Feedstocks: Broad U.S. Potential

• The State of the Bioenergy Industry Today and Our Strategy for Success

#### **Biomass is Widely Available**

- The U.S. has the potential to produce 1 billion tons of sustainable biomass annually.
- About 645 million tons of biomass is needed to make 35 billion gallons of SAF annually.
- No single resource type is sufficient on its own to meet demand.
- A diversified feedstock supply will:
  - Deliver economic and environmental benefits across the U.S.
  - Increase resilience across the supply chain.



\*Saline, current productivities, minimally lined saline ponds, co-location with  $CO_2$  from coal, natural gas, and ethanol plants at prices from \$755-\$2,889 per dry ton (\$2014) \*\*Energy crops derived from 2040 dataset, all other biomass from 2017 dataset

#### **Anticipated Resource Availability Over Time**



Understanding Bioenergy and Its Decarbonization Potential

Biomass Feedstocks: Broad U.S. Potential

 State of the Bioenergy Industry Today and Our Strategy for Success

## **BETO Invests in Applied R&D and Large-Scale Demonstration**



Government

ent 🛑 Project Recipients and Partners 🧲

Banks

#### **From Strain Development to Commercial Operation**



Image courtesy of LanzaTech

#### The State of the Industry



**URGENT: Expand** the emerging industry

- TODAY: ~5 million gallons/year SAF production
- BY 2030: Double SAF production in 2028 and 2029 to meet the 2030 goal
  - Construct 15 biorefineries and produce over 800 million gallons by 2027
- BY 2050: 35 billion gallons, meeting 100% of aviation fuel demand
  - 400–500 refineries in the U.S.
  - More than double today's fuel ethanol industry

### **Doubling the Number of Biorefineries**



- Ethanol industry grew from 2 billion gallons/year in 2002 to nearly 16 Billion gallons in 2016
- There are about 215 ethanol refineries in the U.S. built over 15 years, primarily in the Midwest.
- The U.S. will need:
  - 40-45 refineries by 2030
  - 400-500 refineries by 2050

# **Bioenergy Technologies – FY 2023 Request**



Bioenergy Technologies develops and demonstrates technologies to accelerate greenhouse gas emissions reductions through the cost-effective, sustainable use of biomass and waste feedstocks across the U.S. economy.

| Subprogram (in thousands)               | FY 2022<br>Enacted | FY 2023<br>Request | FY 2023 vs.<br>FY 2022 | % Change |
|-----------------------------------------|--------------------|--------------------|------------------------|----------|
| System Development and Integration      | 70,500             | 152,500            | +82,000                | +116.3%  |
| Feedstock and Algal System Technologies | 82,000             | 68,000             | -14,000                | -17.1%   |
| Conversion Technologies                 | 100,000            | 110,000            | +10,000                | +10.0%   |
| Data, Modeling and Analysis             | 9,500              | 9,500              | 0                      | 0.0%     |
| Total                                   | 262,000            | 340,000            | +78,000                | +29.8%   |

#### FY 2023 Emphasis Areas

- Decarbonizing Transportation: Scale-up in support of SAF Grand Challenge; Continued efforts to reduce CO<sub>2</sub> emissions at "traditional" ethanol biorefineries; New biofuel pathways to marine, rail, and other hard-todecarbonize modes of transportation
- Decarbonizing Agriculture: Climate Smart Agriculture and Soil Carbon; Rural Organic Waste Pilots
- Decarbonizing Industry: Continued development of valuable chemicals and materials that can replace petrochemicals with renewable alternatives

- Biomass can play a significant role in decarbonizing several sectors of the economy.
- Biomass can create good jobs, economic opportunities, and environmental benefits for all states and regions in the U.S.
- Near-term deployment is driven by strong market pull.
- Continued investments in technology R&D and scale-up demonstration are needed to ensure access to all feedstocks in all regions and meet decarbonization goals
  - Including goal of meeting **100% of domestic demand** for aviation fuel with SAF.
- Strong sustained policies are necessary to accelerate investments.