Electrochemical Deoxygenation Process for Bio-oil Upgrading

CERAMATEC[®] ORROW'S CERAMIC SYSTEMS **CAAFI R&D Webinar Series** S. (Elango) Elangovan Joseph Hartvigsen Lyman Frost

Ceramatec Overview

- Founded 1976
- Subsidiary Company of Keystone Holdings (Coors Family owned)
- 140,000 ft² R&D and Manufacturing Facility
- 150 Employees
- Concept to commercialization

 R&D --> prototype --> pilot scale fabrication
- Core competencies:
 - Electrochemistry, Ionic conducting ceramics, & Advanced Materials
- Customers
 - 50% Fortune 100/500 Companies
 - 50% Govt.

Ceramatec Technology Focus

- Combining Electrochemistry, Ceramics, Advanced Materials, and Novel Fabrication:
 - Energy Conversion/Storage
 - Solid Oxide Fuel Cells/Electrolyzer
 - Batteries
 - Chemical Synthesis
 - Na, Li metal
 - Na methylate, Na hypochlorite
 - High purity oxygen, hydrogen

Ceramatec Technology Focus

- Fuel Synthesis/Processing
 - Biofuels and Methane to Liquid fuels
 - Heavy oil upgrading
 - Direct methane to chemical
 - Biogas clean up
- Environmental
 - Fly ash treatment
 - Na removal from radioactive waste

Recent Project Awards

• ARPA-E

- Intermediate Temperature Fuel Cell (2012)
- Direct Conversion of Natural Gas to Chemical (2012)
- Li-S Battery (2013)
- USDA
 - Biomass to Fuel
- DOE
 - Bio-oil Upgrading
- State of Wyoming/Office of Naval Research (2011/2013)
 - Modular Fischer Tropsch Demonstration

Overview of Biofuel Technologies

Biofuel Synthesis

Electrochemical Deoxygenation of Pyrolysis Oil

- DOE CHASE Project
- Electric Energy input, No hydrogen
- TRL 2

- USDA
- Electric Energy input, No hydrogen, Hydrogen byproduct
- TRL 3 4

Biogas to Liquids

- DOE/ONR/Private
- Biogas tar clean up, Fischer Tropsch(Gas to Liquids)
- TRL 6

CHASE Project Team

Ceramatec

- Electrochemical Technology Development

- Dr. S (Elango) Elangovan Pl
- Mr. Joseph Hartvigsen Chemical Engineer
- Pacific Northwest National Laboratory
 - Bio-oil Expertise and DeOx Integration test
 - Mr. Douglas Elliott
- Drexel University
 - Lifecycle Analysis
 - Dr. Sabrina Spatari

Proudly Operated by Battelle Since 1965

Fast Pyrolysis of Biomass to Bio-oil for Liquid Fuels Production

DOUGLAS C. ELLIOTT

Pacific Northwest National Laboratory Ceramatec

Salt Lake City, Utah December 6, 2013

Relationship of Fuel Compositions

Pacific Northwest NATIONAL LABORATORY

Conditions to Maximize Bio-oil Production

Liquid intermediates from the degradation of hemicellulose, cellulose, and lignin in particles of 2-4 mm, <10% moisture
 Fast Pyrolysis: 450°C < T < 550°C, t_{@T} < 2 sec

Comparison of Wood-Derived Bio-oils and Petroleum Fuel

Characteristic	Fast pyrolysis Bio-oil Wet Dry		Heavy petroleum fuel
Water content, wt%	15-25		0.1
Insoluble solids, %	0.5-0.8		0.01%
Carbon, %	39.5	55.8	85.2
Hydrogen, %	7.5	6.1	11.1
Oxygen, %	52.6	37.9	1.0
H/C	2.3	1.3	1.6
O/C	1.0	0.5	0.01
Nitrogen, %	<0.1		0.3
Sulfur, %	<0.05		2.3
Ash	0.2-0.3		<0.1
HHV, MJ/kg	17		40
Density, g/ml	1.23		0.94
Viscosity, cp	10-150@50ºC		180@50ºC

Bio-oil Composition Quick Check

Feedstock	H/C	O/C	
Softwood Forest Residue	1.05	0.38	
Mtn Pine Beetle Killed	1.37	0.54	
Hog Fuel	1.13	0.35	

Unwanted Characteristics of Bio-oil

Attribute	Problem	
Low pH	Corrosion	
High viscosity	Handling, pumping	
Instability	Storage, phase separation, polymerization, viscosity increase	
Solids content	Combustion problems, equipment blockage, erosion	
Alkali metals	Deposition of solids in boilers, engines, and turbines	
Water content	Complex effect on heating value, viscosity, pH, homogeneity, etc.	

Bio-oil Components—Essentially all oxygenates

Carbohydrate fragments > Lignin fragments

- Anhydrosugars
- Sugar fragments
 - Carbonyls
 - Hydroxyaldehydes
- Furfurals
- Alcohols
- Acids
 - Acetic
 - Formic
 - Sugar acids

- Phenolics
- Aromatic ethers
- Methanol
- Oligomers

Refinery Drop-in points for Bio-Oil

EDOx Pyrolysis Process

Pacific Northwest

Path Forward-Ceramatec/PNNL project

Bio-oil vapor conversion to liquid fuels via EDOx process needs to be demonstrated

- Appropriate model compounds
- Mixed model compounds
- Bio-oil vapor components

Process design for bench-scale demonstration needs to be developed

Bench-scale processing of hot vapor from fast pyrolysis by EDOx needs to be evaluated

Deox Process Overview

"Deoxygenation" Background

- 25 Years of Solid Oxide Fuel Cells
 - Fuel: hydrogen, syngas from reformed methane, JP-8
 - kW class demonstration
- 10 Years of Solid Oxide Electrolysis Cells
 - Electrolysis of steam to generate hydrogen
 - Co-electrolysis of steam, carbon dioxide mixture to generate syngas
 - 17 kW demonstration at Idaho Natl Lab.

Deoxygenation Process

- Doped (Y or Sc) Zirconia membrane
 - Oxygen ion conductor
 - No other ions move through
 - 100% of current is from oxygen transport
 - 100% Current (Faradaic) efficiency
- Air electrode (Perovskite)
- Fuel electrode (Ni-Ceria cermet)

Electrolysis Of CO₂

Feed: H_2O , CO_2 , (minor H_2 , CO) Reactions: Oxygen removal from steam, CO_2 , and Reverse Shift Reverse Shift Reaction: $CO_2 + \Uparrow H_2 <==> CO + \Downarrow H_2O$

THORNO 20111012

Button Cell

Reactor for feasibility tests

- Single Cell (Anode/Electrolyte/C athode)
- Oxygenated Species on cathode side (inside the tubular manifold)
- Air flow on the anode side

Short Stack Configuration

Possible Scale up options

THOSENE 20101012

720 Cell System at INL 5.7 Nm³/hr - 17.5kW H₂ Production

Overall Process Schematic

The overall pyrolysis oil to liquid hydrocarbons system without using hydrogen

Hypothesis

 Can we remove oxygen from oxygenated hydrocarbon directly or indirectly?

Table 1: Hydrocarbons from Py-oil				
Acids	$R-COOH + 3H_2$	>	$RCH_3 + 2H_2O$	
Acids	2R-COOH	\longrightarrow	R-R + 2CO2	
Aldehydes	$R-CHO + 2H_2$	\longrightarrow	$R-CH_3 + H_2O$	
Aldehydes	$2R-CHO + 3H_2$	>	R-CH ₂ -CH ₂ -R + 2H2O	
Ketones	$R-CO-R + 2H_2$	>	$R_2CH_2 + H_2O$	
Ketones	$2R-CO-R' + 3H_2$	>	RR'CH-CHR'R + 2H₂O	
Alcohols	$R-CH_2OH + H2$	\longrightarrow	$R-CH_3 + H_2O$	
Ethers	OR		🛈 + кон	
Phenols	OH) + H ₂ O	

Direct: Electrochemical transport of oxygen directly

Indirect: Electrochemical transport of oxygen from water to create hydrogen in-situ to deoxygenate hydrocarbon

Benefits

- Deoxygenation prior to cooling of biovapors
- Electrochemical reaction only removes oxygen (every 4 electrons in the circuit removes one molecule of oxygen)
 - All C and H are retained on the fuel side
 - Lighter HC with fuel value as co-product
- No hydrogen required
- Temperature compatibility (EDOx ~ 650-700°C)

Initial Experiment

- Model Compound Acetone
 - Dilute Acetone vapor (N₂ bubbled through acetone liquid)
 - Hydrogen bubbled through water (to keep Ni reduced)
- Test Condition: 650 °C, 30 to 50 mA/cm²
- Under current the exit gas contained methane (~70%), other hydrocarbon – ethane mainly, and some evidence of octane - (10%)

Challenges

- Would Ni promote coking, formation of large amount of syngas?
 - Will investigate coke-resistance cathode compositions
- Regeneration of electrode after fouling
- Conversion at ambient pressure, and recycle requirements
- Module design
- Separator/current collector (protective layer for metal plates?)

Model Compound Selection

- Simple to Complex
 - Aldehydes, Ketones, Acids, Phenol
 - Mixtures
 - Bio-oil vapor
- Button Cell to multi-cell reactor
- Integrated test at PNNL

Other Fuel Synthesis Projects

Ceramatec's Decarboxylation Process

Modified Kolbe Electrolysis

 $2RCO_2Na \rightarrow R - R + 2CO_2 + 2e^- + 2Na^+$

- No hydrogen addition
- Enables distributed manufacturing

Decarboxylation Technology

Decarb Module

- Currently testing single membrane
 - Vary starting hydrocarbon
 - Product Selectivity
 - Yield
 - Operating conditions
 - Lifetime

Other Fuel Synthesis Projects

Reformation of Tars & Oils from Biogas

THOSENG 20100012

Directly reform tars & oils

THUSSING 201111017

Laboratory scale plasma reformer

Simulated gasifier stream

- Bottled syngas
- Toluene injection
- Steam, O₂, or air to obtain temperature
- GC analysis of toluene destruction and CGE

Best combination

	Dry Gas	Air In	O ₂ In	H ₂ O In	Toluene In
Run	L/min	L/min	L/min	g/min	g/min
4	50	52	0	1.7	5.9

			Mole %	Output			
Run	H_2	N ₂	СО	CO ₂	Toluene	CH4	H ₂ 0
4	12	54	21	7	0	.3	6

	LHV Gas In	LHV Gas Out	Thermal Eff	Toluene
Run	kW	kW	Percent	% Destroyed
4	5.02	5.87	117	100

Run 4 had good destruction and good efficiency

THOSING 20 INTRODA

Excellent Conversion Obtained

- Conversion of BTX and other hydrocarbons very good
 - 92% methane (near equilibrium limit)
 - 96% ethane
 - 100% (to detection limit) of other C2-C4
 - 98% benzene
 - 99% toluene
 - 100% (to detection limit) of xylenes

Process design basis

- Basis process feed: 500 SCFM
- Gasifier product composition from Emery Energy
- Ability to add O₂ or air
 - to provide heat of reformation
 - raise temperature to 850°C
 - 17.9 SCFM of O₂ required to raise T from 504°C to 850°C
- No coke is detected (sufficient steam present)

Reformer installation

- Assembled 3-stage
 reformer
- At Western Research Institute – Laramie, WY
- Installed and tested

Other Fuel Synthesis Projects

Syngas to Liquid

FINDERING SOUTHORIZ

Biogas to Fuel Capabilities

Ceramatec Laboratory FT System

Ceramatec FT Product From 1-1/2" Reactor

- Production rates up to 4 liter/day
- 2200 hour run
- FT 46.5 MJ/kg, diesel 46 MJ/kg, 40 MJ/kg B100 FAME
- Cetane 60.2 by ASTM D613

Pre-pilot Plant Scale up

4" Reactor Tube - Fischer Tropsch Skid

THURSDIG 20 HILFORD

FT Demonstration

30 liters/day FT Production Demonstrated

THOMAS DIRECTOR

FT Product Analysis

Summary

- Ceramatec has been investigating transportation fuel synthesis options for over a decade
- Currently three major projects at various TRL underway
 - Deoxygenation of Bio-oil
 - Decarboxylation of fatty acids from bio-source
 - Biogas clean up and FT conversion to liquids

