CAAFI – CORE-JetFuel Cooperation Workshop

Alexandria, Virginia 28Apr'16

28Apr'16

Objectives

The main aim of this workshop is to facilitate discussion among experts from the US and Europe in the area of alternative fuels for aviation. Topics of discussion intended to include:

- * Policy options for large-scale deployment of SAJF
- * Promising production technologies and value chains
- * Impact of present low oil prices on investments in SAJF
- * Harmonisation of sustainability requirements
- * Coordination of SAJF stakeholder's strategy
- * Setting-up stakeholder initiatives for SAJF
 - * Status in EU and lessons learnt from CAAFI

Workshop Agenda, morning

09:00	Welcome to the Workshop Steve Csonka, CAAFI, USA, Rainer Janssen and Dominik Rutz, WIP Renewable Energies, Germany			
09:10	Introduction to CAAFI, STEVE CSONKA, CAAFI, USA			
09:30	Introduction to CORE-JETFUEL, JOHANNES MICHEL, FNR, GERMANY			
09:50	Alternative Aviation Fuels – Status in the US, STEVE CSONKA, CAAFI, USA			
10:20	Alternative Aviation Fuels – Status in Europe, REMY DENOS, EUROPEAN COMMISSION, DG ENERGY			
10:50 – 11:20	Coffee break			
11:20-12:20	Discussion Panel I: Supply Chain Development and Deployment of Alternative Fuels			
11:20	Introductory presentation US, NATE BROWN, FAA, USA			
11:30	Introductory presentation EU, MARIA DE LA RICA JIMÉNEZ, SENASA, SPAIN			
11:40	Discussion Panel I Moderation: Nate Brown, FAA and Maria de la Rica Jiménez, SENASA Participants: all workshop participants			
12:20 - 13:50	Lunch break			

Workshop Agenda, afternoon

13:50 – 14:40	Discussion Panel II: Promising production technologies and value chains			
13:50	Introductory presentation US, ZIA HAQ, U.S. DEPARTMENT OF ENERGY, USA			
14:00	Introductory presentation EU. ALAIN QUIGNARD, IFPEN, FRANCE			
14:10	Brief Introductory to the EU Project ITAKA, INMACULADA GOMEZ JIMENEZ, SENASA, SPAIN			
14:15	Discussion Panel II			
	Moderation: Zia Haq, U.S. DOE and Alain Quignard, IFPEN / Andreas Sizmann, Bauhaus Luftfahrt Participants: all workshop participants			
14:40 – 15:30	Discussion Panel III: Sustainability			
14:40	Introductory presentation US, NANCY YOUNG, AIRLINES FOR AMERICA (A4A), USA			
14:50	Introductory presentation EU, HORST FEHRENBACH, IFEU, GERMANY			
15:00	Discussion Panel III			
	MODERATION: NANCY YOUNG, A4A, USA AND JOHANNES MICHEL, FNR, GERMANY			
	PARTICIPANTS: ALL WORKSHOP PARTICIPANTS			
15:30 – 16:00	Coffee break			
16:00 – 16:30	Discussion Panel IV: Stakeholder initiatives for alternative aviation fuels – Progress and			
	perspectives			
16:00	Discussion Panel IV			
	MODERATION: STEVE CSONKA, CAAFI AND MARIA DE LA RICA JIMÉNEZ, SENASA / RAINER JANSSEN, WIP			
	Renewable Energies			
	PARTICIPANTS: ALL WORKSHOP PARTICIPANTS			
16:30	Summary			

Lunch Options

9 May 2016

Introduction to CAAFI

FAA Alternative Jet Fuel Activities

Testing

- Support Cert/Qual testing
- Improve Cert/Qual process (NJFCP)
- Emissions measurements

Analysis

- Environmental sustainability
- Techno-economic analysis
- Future supply

Coordination

- Interagency
- Public-Private
- State & Regional
- International

FAA Alternative Jet Fuel Activities

Testing

- Support Cert/Qual testing
- Improve Cert/Qual process (I
- **Emissions measurements**

Analysis

- Techno-economic ar.
- Future supply

Coordination

- Interagency
- Public-Private
- State & Regional
- International

- CLEEN Testing and Research Report Review
- Volpe BAA Testing •
- A31 Alternative Jet Fuel Test & Evaluation •
- A33 Alternative Jet Fuel Test Data Library
- SEMRS Jet Fuel Data Tracking
- A25-30, 34 National Jet Fuels Combustion Program
- A01 Alternative Jet Fuel Supply Chain Analysis
- A13 ACCESS 2 Micro Physical Modeling with NASA
- Environmental susta A24 Emissions Data Analysis for CLEEN, ACCESS, and Other **Recent Tests**
 - A32 Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel
 - SEMRS Analysis
 - Volpe Alternative Fuels Transportation Optimization Tool (AFTOT) •
 - Impacts of removing naphthalene from jet fuel (ASCENT New)
 - CAAFI
 - Farm to Fly 2.0
 - Federal Alternative Jet Fuel Strategy
 - International agreements

CAAFI – Public/Private Partnership A reflection of the 23+B gpy US Jet "market pull"

An aviation industry coalition established to facilitate and promote the introduction of alternative aviation fuel

Goal is development of non-petroleum, drop-in, jet fuel production with:

- * Equivalent safety & performance
- * Comparable cost
- * Environmental improvement
- * Security of energy supply for aviation

An initiative that enables its diverse stakeholders to build relationships, share and collect data, identify resources, and direct research, development and deployment of alternative jet fuels

CAAFI Sponsors From across the aviation enterprise

CAAFI mechanics

- *** FAA funds the Office of the Executive Director**
- * CAAFI itself has no financial function or mechanisms
- * Focals from each sponsor provide dedicated support
- * Other sponsor members provide work-in-kind on an ad hoc basis
- * CAAFI members participate in work-team efforts
- * We execute other work through the integrated interests of our partners through Public-Private-Partnerships
- * Approaching our 10 year anniversary

... to collaboratively stand-up a new industrial segment

CAAFI Work Teams

Research & Development Enabling Multiple "Drop-in" Solutions Certification / Qualification

> Fostering ASTM D7566 Approval

Environmental

Business

GHG LCA, PM2.5 Quantification, Sustainability

Facilitating Deployment, Investment

Defining the full supply chain ...

... via cooperative R&D-D&D efforts Directly and through several PPPs

Where we're working CAAFI facilitation – broad and deep

Feedstock Development **Pathway Development Sustainability Price Point Risk Reduction Institutional Alignment Analysis / Tools Regional Engagement** Int'l Engagement

Steve Csonka Executive Director, CAAFI +1-513-800-7980 Csonka.CAAFI.ED@gmail.com Steve.Csonka@caafi.org www.caafi.org

FUELING SOLUTIONS FOR SECURE & SUSTAINABLE AVIATION

Introduction to CORE-JetFuel

Alternative Aviation Fuels – Status in the US

Overall industry summary:

- * Industry aligned on need !
- * Other challenges we've met:
 - * Technical viability proven & versatile solutions identified
 - * Modest amounts of SAJF coming online
 - * AltAir from Mar'16, followed by three DPA facilities in '18
- * Challenges remaining:
 - Risk, affordability, financing, execution, more feedstocks and processes
- * Working a full range of Public-Private-Partnership activities to break down barriers, lower risk, facilitate supply

Airline offtake agreements ... and more in process

SAJF approved production pathways Limited to paraffins thru '15 – other molecules pending

- Approved
- Gasification & FT (FT-SPK)
- Hydroprocessed lipids (HEFA-SPK)
- * Biochem sugars (HFS-SIP)
- FT-SPK/A
- * Isobutanol conversion (ATJ-SPK)

50% max blend 50% max blend 10% max blend 50% max blend 30% max blend

AltAir Fuels – First dedicated US production facility for HEFA-SPK fuels in Paramount, CA, 40 Mgpy "Phase 1" from FOG. Currently in production. SAJF being delivered to the LAX fuel farm. F76 being delivered to Navy via 77M gal DLA purchase in current fiscal year.

DPA Program

- The Defense Protection Act was established in 1950 for the purpose of providing investments in anything America needs, but doesn't have at scale, for national security.
- * In 2012, the President and Secretary of the Navy determined that alternative fuels met this criteria.
- * The Navy entered into an MOU with DOE and USDA to fund the commercialization of 3 fuel production facilities with a combined nameplate production level of 104M gpy. The agencies jointly funded the program at ~\$510M over 3 years, and such funding has been appropriated by Congress.

DPA Recipient: Red Rock Biofuels

- * 140,000 dry tons of woody biomass
- * 12 million gallons per year of renewable, liquid transportation fuels
 - 3M gpy SAJF offtake agreement from each of Southwest Airlines and FedEx
 - \$70 million DPA Title III award for ~\$200 million refinery

TCG Global gasifier Velocys FT reactors Haldor Topsoe upgrading

Courtesy Biofuels Digest

9 May 2016

24

DPA Recipient: Fulcrum Bioenergy

- * 147,000 tons of post-recycled waste
 - * Converted into 11 M gpy liquid fuels & power
- Cathay Pacific and United Airline agreements for supply of >465M usg over 10 years from multiple facilities

DPA Phase 2 winner USDA Loan Guarantee Waste agreements comprising ~4% of total landfill volume

Courtesy Fulcrum-Bioenergy http://www.fulcrum-bioenergy.com/index.html

9 May 2016

DPA Recipient: Emerald Biofuels

- * 88 M gpy biodiesel capacity from lipids
- * Development program to achieve >500M gpy portfolio

Non-edible oil feedstocks Honeywell UOP Green Diesel/Jet Technology Port Arthur, TX

Courtesy Beaumont Enterprise, photo by Jake Daniels https://emeraldonellc-public.sharepoint.com/

Other commercial activity

- * Several entities are engaged in commercial development of existing and soon-to-be qualified pathways
- CAAFI working with several producers in feasibility studies and business development efforts (Farm-to-Fly 2.0 State Initiatives)
- Other commercial-scale technology demos to occur in next
 12 months

ASTM D7566 qualification activity

Approach		ch	Feedstock	Notes
In- Process	FT-SPK/	A (annex A4)	Cellulose – syngas & alkylati	on approved 4Q'15
	ATJ-SPK	(annex A5)	Sugars – isobutanol	approved 2Q'16
	СН		Lipids	ARA: Step 3
	HEFA Ex	pansion	Lipids – renewable diesel	R.R. in devel.
	SK/SAK	(CCS-APR)	Sugars	Virent: Steps 4/1
	HDCJ (p	yrolysis)	Cellulose – biocrude	LanzaTech, UOP
	Co-proc	essing	Biocrude	Chevron, BP, Phillips66
	CATJ-SK	Α	Sugars – alcohols	Byogy, LT, SwB
				Vertimass, Poet ?
	ATJ-SPK	expansion	Sugars – ethanol / xOH	GranBio, UOP, LT, SwB

ATJ-SPK expansion

ASTM D7566 pipeline

ApproachFeedstockNotes1)CHyP (syngas, non-FT)CelluloseProton Power2)Microbial conversionSugars - isobuteneGlobal Bioenergies3)HTLCelluloseAlgenol, Genifuel, Sapphire4)Catalytic HTLCelluloseLicella, Muradel, QUT5)SBI CGC PICFTRLipids - biodieselSBI Bioenergy6)CCLLipidsTyton7)Hydrogenotrophic Conv.CO2 / Producer GasKiverdi8)Cyanobacterial Prod.CO2Joule9)STG+ GTLC1-C4 Gas / SyngasPrimus10)Acid DeconstructionCelluloseMercurius11)Thermal Catalytic Conv.CelluloseShell/CRI/IH212)Thermal Deoxyg.LipidsForge Hydrocarbons13)Ionic Liquid Decon.CelluloseJBEI, tbd14)Metal Catalytic ConversionCellulosePurdue research15)Enzymatic ConversionLigninGLBRC & JBEI				
2) Microbial conversion 3) HTL 4) Catalytic HTL 5) SBI CGC PICFTR 6) CCL 7) Hydrogenotrophic Conv. 7) Hydrogenotrophic Conv. 9) STG+ GTL 10) Acid Deconstruction 11) Thermal Catalytic Conv. 13) Ionic Liquid Decon. 14) Metal Catalytic Conversion 2) Microbial conversion 1) Metal Catalytic Conversion 1) Metal Catalytic Conversion 2) Microbial conversion 2) Sugars - isobutene Cellulose 2) Sugars - isobutene 2) Sugars -		Approach	Feedstock	Notes
	Pre-Pipeline	 Microbial conversion HTL Catalytic HTL SBI CGC PICFTR CCL Hydrogenotrophic Conv. Cyanobacterial Prod. STG+ GTL Acid Deconstruction Thermal Catalytic Conv. Thermal Deoxyg. Ionic Liquid Decon. Metal Catalytic Conversion 	Sugars - isobutene Cellulose Cellulose Lipids - biodiesel Lipids CO2 / Producer Gas CO2 C1-c4 Gas / Syngas Cellulose Cellulose Lipids Cellulose Cellulose	Global Bioenergies Algenol, Genifuel, Sapphire Licella, Muradel, QUT SBI Bioenergy Tyton Kiverdi Joule Primus Mercurius Shell/CRI/IH2 Forge Hydrocarbons JBEI, tbd Purdue research

CAA

Why do we care about the pipeline

* We need SAJF affordability

- * Processes applicable to lower cost, available feedstocks
- * Lower CapEx, OpEx
- * We need SAJF availability
 - Available for processing regionally, world-wide, with available, applicable feedstocks
- * We need commercialization activity / fuels soon
 - * Leverage existing biofuel infrastructure or adjacent production
- * Feedstock development cannot realistically progress to scale with the potential for offtake from a fuel producer

Ex: Lipid pathway applicability Conversion of fats, oils & greases

SAJF Pathways

→ HW UOP: Ecofining / GreenJet
→ Neste NEXBTL:

→ UPM:

SAJF Intentions (first facilities)AltAir Fuels40 M gpy (30% jet)Emerald Biofuels88 M gpySG Preston5 x 120 M gpy (77% jet)

Ex: Lipid pathway applicability Conversion of fats, oils & greases

SAJF Pathways

- * Hydrotherm oils (CH)
 - Renewable Diesel
- * Refinery Co-processing
- * SBI
- Forge, Tyton, ...

- HW UOP: Ecofining / GreenJet
 Neste NEXBTL:
 UPM: SAJF Intentions (first facilities) AltAir Fuels
 40 M gpy (30% jet)
 - AltAir Fuels40 M gpy (30% jet)Emerald Biofuels88 M gpySG Preston5 x 120 M gpy (77% jet)

Process

Ľ

Ex: Lipid pathway applicability Conversion of fats, oils & greases

SAJF Pathways

→ HW UOP: Ecofining / GreenJet
 → Neste NEXBTL:

→ UPM:

SAJF Intentions (first facilities)AltAir Fuels40 M gpy (30% jet)Emerald Biofuels88 M gpySG Preston5 x 120 M gpy (77% jet)

- ★ Hydrotherm oils (CH) → ARA unique value prop. 100% drop-in
- ★ Renewable Diesel → Unlock existing 1 B+ gpy RD production
- * Refinery Co-processing

Front-end: Blend with crude
 Mid: FCC, HC, Coker ?
 Back-end: Hydroprocessing ✓

- SBI > Unlock existing biodiesel production, no H2 need
- Forge, Tyton, ... → Toward improved affordability

Process

Ļ

Sustainable lipid feedstocks HEFA TEA: feasibility is in the feedstock economics ...

- Multiple conversion processes
- Lowered H2 cost & availability
- Multiple feedstock developers
- Multiple producers
- Multiple low LUC/ILUC agribased feedstocks, plus:
 - White Grease, Chicken Fat, Tallow
 - * UCO / Yellow Grease
 - * Brown Grease
- Easier supply chain scale-up leveraging biodiesel and RD production capacity

Targeting most sustainable solutions: Low, or Zero, impact LUC/ILUC & F-v-F solutions; Environmental Services a plus.

9 May 2016

Recent focus on "waste" evaluations And similar concepts with enviro-services co-benefits

- * Overcomes challenges
 associated with "classical"
 feedstocks primarily price
- * Avoids some challenging issues with "biofuels"
- Solves other landfill / conversion related issues
- Enables technical proving for later conversion to biomasses
- Matches interests of other constituencies

Examples:

- > MSW (alone could satisfy aviation)
- Sanitary waste treat.
- Animal waste
- > Animal processing
- Industrial wastes
- Forestry residuals

Summary – programmatic goals & plans

- * Aviation as a first mover and dedicated long-term offtaker
- * Fuel production at petroleum pricing parity (policy as needed)
- * FAA: Aspirational 1B gpy by 2018
 - * 20 M gpy facility in each of 50 states (AltAir is 40 M gpy jet and diesel)
 - * Translated to F2F2 goal of standing-up feedstocks to enable 1B gpy
- * DLA as a regular offtaker:
 - * Navy: 50 percent of total Navy energy consumption afloat by 2020
 - * AirForce: 50 percent of total non-contingency consumption by 2025
- * First real test is CNG2020: => as low as 282M gpy in US
- * Project engagement from each:
 - * State, Airline, OEM, key BizAv player
- * Significantly reduce technology & execution risk to unlock capital

How do we get significant SAJF?

With focused effort!

- * Abate challenges & help stand-up a new industrial sector!
 - * Affordable, abundant feedstocks worldwide
 - * Existing, new, traditional, unconventional, futuristic
 - Cost effective conversion technologies enabling use of all appropriate feedstocks
 - * Infrastructure, partners in the existing petro-jet space
 - * All the adjacencies: finance, policy, insurance, R&D, BD, feasibility projects, D&D, ...
- * Enlist the assistance of partners and those who share common goals

Alternative Aviation Fuels – Status in the EU

Steve Csonka Executive Director, CAAFI +1-513-800-7980 Csonka.CAAFI.ED@gmail.com Steve.Csonka@caafi.org www.caafi.org

FUELING SOLUTIONS FOR SECURE & SUSTAINABLE AVIATION