ASCENT Supply Chain Tools and Projects

Michael Wolcott, Kristin Brandt, Dane Camenzind, Lina Martinez

Washington State University

Burt English, Edward Yu

University of Tennessee

Scott Turn

University of Hawaii

Nathan Brown, FAA Program Manager Anna Oldani, FAA Program Manager

ASCENT Team

Lead Universities:

Washington State University (WSU)

Massachusetts Institute of Technology (MIT)

Core Universities:

Boston University (BU)

Georgia Institute of Technology (Ga Tech)

Missouri University of Science and

Technology (MS&T)

Oregon State University (OSU)

Pennsylvania State University (PSU)

Purdue University (PU)

Stanford University (SU)

University of Dayton (UD)

University of Hawaii (UH)

University of Illinois at Urbana-Champaign (UIUC)

University of North Carolina at Chapel Hill (UNC)

University of Pennsylvania (UPenn)

University of Tennessee (UT)

University of Washington (UW)

Advisory Committee - 58 organizations:

- 5 airports
- 4 airlines
- 7 NGO/advocacy
- 9 aviation manufacturers
- 11 feedstock/fuel manufacturers
- 22 R&D, service to aviation sector

ASCENT Focus Areas

Alternative Jet Fuels

Feedstock Development, Processing and Conversion

Regional Supply Chain Design and Analysis

Environmental Benefits Analysis

Aircraft Component Deterioration and Wear

Fuel Performance Testing

Leveraging UTenn Suite of Tools

ASCENT Supply Chain Tool Integration

CONFIGURATION

Harmonized TEAs

Resource Siting Models

Scenario

Structure: **IBR**

5.70 \$/gal Jet Fuel Cost:

Nodes

Airport

IBR/Upgrading Refinery

Links

From Feedstock

To Airport

Publication in progress.

Supply Chain Configuration – Commodity + Services

Maximize Revenues

Minimize Costs

Supply Chain Model Integration

ASCENT Regional Projects

Pacific Northwest Regional Efforts

- Washington State Aviation Biofuels Workgroup
 - Since 2015
 - WA Clean Fuels Standard
- Port of Seattle Regional Assessment
 - ASCENT Supply Chain Tools
 - Lipids/HEFA
 - MSW/GFT
 - Forest Residual/GFT/ATJ

50% Pine / 50% Switchgrass

- The two feedstock together can serve nine biorefineries
- A total of 9.1 million tons of feedstock are needed
- Nearly 611 thousand acres of lands are used for feedstock
- The average feedstock cost is around \$61.7 per dry short ton (~\$68 per dry MT)

Nashville SAF from Pennycress

- Bio-oil feedstock costs from pennycress to feed a HEFA biorefinery to supply Nashville, Tennessee International Airport
- Three crush facilities are required
- The economic analysis shows that the pennycress oil could be available at the range from \$0.80 to 1.09 per kg depending on whether the crush facility paid \$0.081 to \$0.108 per pound.

Central Appalachian SAF from Hardwood

- Quantify and characterize woody biomass feedstock and identify optimal SAF and coproduct supply chains in the Central Appalachian Region (CAR)
- Three biorefineries could be located in the CAR to supply 545,000 dry short tons
- Total feedstock cost delivered to biorefineries is around \$105 million

Pongamia (Milletia pinnata)

C&D Waste Regional Project ~50 kg feedstock sample

C&D Waste mined from landfill or truck intake

Material Processing

FactSage[™] Model Prediction

QUESTIONS

