Production of Aviation Fuels and Chemicals from Poplar Feedstock

Rick Gustafson School of Environmental and Forest Sciences

hardwoodbiofuels.org Advanced Hardwood Biofuels Northwest

Advanced Hardwood Biofuels Northwest -Laying the foundation for a PNW biofuels and bio based chemicals industry

Advanced Hardwoods Northwest – preparing PNW for bio based chemicals and biofuels industry

Sustainable energy tree farms growing optimized poplar feedstock

Flexible and efficient biorefineries

Chemical and transportation fuel products

Laying the foundation for a renewable fuels and chemicals industry

Thorough analyses

Sustainable energy tree farms growing optimized poplar feedstock

Flexible and efficient biorefinery

Chemical and transportation fuel Community and policy support

Well educated work force

products

Committed land owners

- Feedstock
- **Conversion**
- Sustainability
- Education
- Extension

Feedstock production growing poplar for bioenergy

National Institute of Food and Agriculture

Hybrid poplar for lumber, veneer, pulp chips

Bioenergy silviculture

Stocking of 1,453 treesper acre

Single-pass harvest technology

Coppice regeneration

Five 3-year cutting cycles

Hybrid poplar demonstration farms

- □ Four farms, 50 to 100 acres each.
- Alluvial plains and Cascade range piedmont sites
- □ Sea level to 2300 feet elevation
- □ Level terrain up to 10% slope
- □ 18 to 45 inches precipitation
- □ Clay, clay loams, silty loams

Jefferson OR – 2nd growing season after coppice

Site	1 st Harvest: Two-Years from Planting	2 nd Harvest: Three-Years from Coppicing	3 rd Harvest: Three-Years from Coppicing
	BDT / acre / year		
Jefferson	5.0	7.0	7.0
Hayden	4.5	7.0	7.0
Clarksburg	5.0	8.7	8.7
Pilchuck	3.0	5.7	5.7
Mean	4.4	7.1	7.1

Inventory and Weight Tables

Harvesting efficiency

105.0 - 112.4 % 96.7 - 104.9 % 86.5 - 96.6 % 71.7 - 86.4 % 37.0 - 71.6 %

0.0 - 36.9 %

112.5 - 136.6 %

Engine Load Rating

Economics analyses

Agronomic sustainability

Leaf isoprene emission variation among hybrid variety for pre- and neo-formed leaves

Greenhouse Gas Emissions in poplar and ag reference fields

Poplar at the Biocycle Farm

Poplar and Wastewater Management

Overlap with good biorefinery locations

hardwoodbiofuels.org Advanced Hardwood Biofuels Northwest

Conversion turning trees into fuel and more valuable molecules

One way to make jet fuel from poplar wood

Physical composition of 2-year-old hybrid poplar clones (w/w)

19

Overall monomeric sugars recovery after pretreatment and hydrolysis (kg/tonne)

One way to make jet fuel from poplar wood

Process flow diagram

Dehydration of Alcohols

 $C_2H_5OH \rightarrow C_2H_4 + H_2O$

- Ethanol dehydration experiments completed
 - Commercial alumina catalyst (inexpensive, readily available)
 - Conversion and selectivity to ethylene > 99.5% achieved
- Propanol dehydration experiments completed
 - Same catalyst, similar results

Fresh catalyst After 310 hrs

Oligomerization of ethylene

Unclean combustion (smoke and char) Benzene is carcinogenic (limit 0.8 wt %) Maximum 20 wt % in gasoline

Hydrocarbons Composition – Ni-Al-MCM-41

190° C, 510 psig, with 5 wt.% nickel at a WHSV of 3.50 hr-1. Liquid yield:24.58 wt.% 25

Ni-MCM-41 Preparation

Liquid Product

Hydrocarbons Compostion - Ni-Hβ 120° C, 520 psig, 5 wt.% nickel at a WHSV of 2.08 hr⁻¹. Liquid yield: 8.03 wt.%

Catalyst Preparation

Liquid Product

2016/2017 research

- Optimize catalyst and reactor performance
- Produce hydrocarbon fuel at kgs scale
- Begin ASTM certification

process

Standards Worldwide

ZeaChem's Boardman demonstration-scale refinery

ZeaChem Commercial Update

Sustainability - performance metrics

Capital costs for 100 MMgal/yr plant

(Fixed capital, \$ million)	
Feedstock through ethanol	502
Alcohol to hydrocarbon	113
Steam plant and natural gas reforming	149
Total	\$764

Capital economies of scale

Operating expenses

	Dollars per gallon		
Operating cost	Base case, 100MMGAL		
Feedstock	0.88		
Cellulase enzymes	0.50		
Fermentation nutrients	0.09		
Other raw materials	0.29		
Waste disposal	0.04		
Electricity (6¢/kWh)	-0.01		
Reforming O&M	0.04		
Natural gas	0.34		
Fixed costs	0.45		
Total cash cost	\$2.62		
Minimum selling price, 7% discount	\$3.44		
Minimum selling price, 15% discount	\$4.11		

Operating expenses

	Dollars per gallon	
Operating cost	Base case,	2015
	100MMGAL	Facility*
Feedstock	0.88	1.01
Cellulase enzymes	0.50	0.97
Fermentation nutrients	0.09	0.09
Other raw materials	0.29	0.35
Waste disposal	0.04	0.04
Electricity (6¢/kWh)	-0.01	-0.01
Reforming O&M	0.04	0.05
Natural gas	0.34	0.35
Fixed costs	0.45	0.78
Total cash cost	\$2.62	\$3.63
Minimum selling price, 7% discount	\$3.44	\$5.78
Minimum selling price, 15% discount	\$4.11	\$7.06

- 25MMGAL capacity
- \$80/BDT feedstock
- 20mg enzymes/g cellulose @ \$10/kg enzymes
- 40% equity with
 5% loan rate

Alternative products

	Annual capacity at 100% production	Selling price	Annual revenue at 100% production
Acetic acid	730,000 tons	\$600/ton	\$438 million
Ethyl acetate	523,000 tons	\$1000/ton	\$523 million
Ethylene	314,000 tons	\$1000/ton	\$314 million
Ethanol	160 MMGal	\$1.40/gal	\$224 million
Jet fuel	100 MMGal	\$1.00/gal	\$100 million

Land suitability for growing poplar - suitable acres by state and suitability class

State	Suitability Class	Acres
California	Without Irrigation	7,300,000
California	With Irrigation, Water Available	4,000,000
California	With Irrigation, Water Unavailable	12,000,000
Montana	Without Irrigation	35,000,000
Montana	With Irrigation, Water Available	450,000
Montana	With Irrigation, Water Unavailable	7,200,000
Oregon	Without Irrigation	9,300,000
Oregon	With Irrigation, Water Available	830,000
Oregon	With Irrigation, Water Unavailable	8,200,000
Washington	Without Irrigation	7,700,000
Washington	With Irrigation, Water Available	1,200,000
Washington	With Irrigation, Water Unavailable	5,000,000
Regional poplar budgets

 Breakeven price for poplar ranges from \$48--\$160 depends on region, type of land and management.

 Breakeven prices are higher for croplands due to higher land rents and irrigation costs.

Analysis of jet fuel biorefineries – 1,250,000 tons biomass/year

 Best sites in western WA and OR

- Most sites have costs >\$4.5/gal
- Challenges in
 aggregating
 enough low cost
 poplar

Value-added from the operation of a biorefinery

Analysis of acetic acid biorefineries – 250,000 tons biomass/year

Larger set of good sites

Production costs of
 \$600/ton \$650/ton

~\$500-\$550/ton with novel recovery process!!

Jet fuel LCA global warming potential

Acetic acid LCA global warming potential: cradle to biorefinery gate

Education and Extension

National Institute of Food and Agriculture

Community college workforce development

- Provide relevant practical technical training to build the workforce for bioenergy and other production/process related industries
- Train participants for well-paying rural jobs at the nexus of agriculture, water and energy production
- Pair new applied science and engineering courses with existing electrical curriculum

New Degrees:

AAAS Plant Operations

AAS-T (applied science transfer degree) Both plug-in to applied degrees: Electrical, HVACR, Wind, Millwright

New Certificates:

Industrial Maintenance, Biomass Feedstock Management, Plant Operations

Short Certificate in Bioproducts (in progress)

Bioenergy YouTube channel is operational!

INDUSTRY How to visualize the big picture Diesel Chemica Conversio Heat & Powe Thermal Conversion Mechanical Chemical Chemical Conversion Conversio Sugar eactants & Heat Thermal

Expand bioenergy community:

12.00

14.03

- Generate open source knowledge available to everyone.
- Support K-12, community college & industry education.

AHB Website

- Over 7000 unique visitors since 2013
- Web traffic is up38% from 2014
- Consistently over50% new visitors
- Over 300 pages of content

Alison Morrow, aired August 17, 2015 KING 5

Conclusions

- Poplar is a viable feedstock for production of renewable fuels and chemicals
- Producing aviation fuel from biomass is challenging with current petroleum pricing
 - Production of high value chemicals can increase revenue
 - Monetizing of ecosystem services can also add value
- Commercialization of a biorefinery in the PNW is forthcoming
- Production of fuels and chemicals from poplar feedstock is sustainable and provides substantial rural economic benefits
- Multi-dimensional, integrated research programs are needed for comprehensive development and assessment of large scale bioresource enterprises

The AHB project is supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30407 from the USDA National Institute of Food and Agriculture

USDA INIFA