Renewable Hydrogen from Biomass Pyrolysis Aqueous Phase

Abhijeet P Borole (PI)¹

Ramesh Bhave¹, Costas Tsouris^{1,2}, Spyros Pavlostathis², Sotira Yiacoumi², Philip Ye³, Nikki Labbe³, Pyongchung Kim³, Jim Pollack⁴, Dan Westerheim⁵

¹Oak Ridge National Laboratory ²Georgia Institute of Technology ³University of Tennessee ⁴OmniTech international ⁵FuelCellEtc, Inc. ⁶Pall Corporation

May 30, 2014 CHASE Project Webinar

The slides from this presentation should not be distributed, forwarded or cited (where noted)

Outline

- Background
 - Biomass pyrolysis process
 - Need for Hydrogen
 - Potential impact on efficiency of biofuel production
 - Potential impact on greenhouse gas emissions and sustainability
- Objectives
- Project tasks
- Team members
- Microbial Electrolysis
- Bio-oil production, oil-water separation, downstream membrane separations, LCA analysis.

Fast pyrolysis-based biofuel production

Figure 2-16: Thermochemical Pyrolysis Route for Biomass to Biofuels

Ref: Biomass Multi-year Program Plan

Figure 4.1. Block Diagram of Overall Design

Ref: Jones et al., *Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: A design case.*; PNNL-18284 Rev.1; Pacific Northwest National Laboratory: 2009

Biomass: $C_5H_7O_2N \rightarrow$ gasoline (C_8H_{18}), diesel ($C_{12}H_{23}$) Needs significant amount of hydrogen

4 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Hydrogen production from natural gas

- Natural gas
 - Steam-Reforming Reactions Methane: $CH_4 + H_2O$ (+ heat) $\rightarrow CO + 3H_2$

T = 700-1000°C P = 3-25 bar

- Producer gas from pyrolysis
 - Water-Gas Shift Reaction CO + $H_2O \rightarrow CO_2 + H_2$ (+ small amount of heat)

Hydrogen Efficiency and Process yields

	Model Results	Reference Data ^(a)	Reference Data ^(b)
Yields, 1b/100 1b dry wood			
Oil	65	59.9	66
Water	10	10.8	12
Char & Ash	13	16.2	8
Gas	12	13.1	11
Loss			3
Dil Composition			
Water in oil, wt%	21	15-30	
Carbon, wt% dry	58	55-58	
Hydrogen, wt% dry	6	5.5-7.0	
Oxygen, wt% dry	36	35-40	
(a) Ringer et al. 2006		-	-

Biooil characterization

Fuel product characterization

Model	Reference Data ^(a)	Reference Data ^(b)
44		38
48		50
13		12 by difference
4.96	5.01	3.45
0	50	0
	10.0	Not reported
88.1	86.8	86.8
10.5	13.2	10.8
1.5	0.02	2.5
0.87	0.83	0.93
17,600	19,765	17,302
16,600	18,525	16,276
	44 48 13 4.96 0 88.1 10.5 1.5 0.87 17,600	44 48 13 4.96 5.01 0 50 10.0 88.1 86.8 10.5 1.5 0.02 0.87 0.83 17,600 19,765

Ref: Jones et al., *Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: A design case.*; PNNL-18284 Rev.1; Pacific Northwest National Laboratory: 2009

6 Managed by UT-Battelle for the U.S. Department of Energy

(b) Mohan et al. 2006

Presentation_name

Note: The data on this slide should not be distributed, forwarded or cited.

National Laboratory

Other issues

Problems

- Stability of biooil (polar-non-polar separation over time)
- Corrosivity due to acids (biooil pH = 2.8)
- Biooil and fuel yield (biomass basis)
- Loss of carbon to aqueous phase

Phenolic acids

CH₃COOH Acetic acid

CHASE program: Carbon, hydrogen and separations efficiency improvement.

Project Outline

Schematic of the biomass to biofuel process with modifications to enable improvement in hydrogen efficiency

8 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Note: The information on this slide should not be distributed. forwarded or cited.

Focus: Hydrogen

Ref: Biomass Multi-year Program Plan

- Is there an alternate way to meet the objectives without using natural gas?
 - Oil stabilization
 - Upgrading to gasoline/diesel fuels
 - Reducing cost of hydrogen

Project objectives

- Develop reforming process for efficient conversion of aqueous phase organics to hydrogen via microbial electrolysis.
- Develop energy-efficient methods to separate bio-oil aqueous phase, extract acidic and polar compounds from bio-oil for production of hydrogen.
- Demonstrate improvement in hydrogen efficiency via mass and energy balance.
- Demonstrate potential for reduction in life cycle greenhouse gas emissions via life-cycle analysis.

Address Technical Area 2: Hydrogen Efficiency,

Subtopic: *Reforming hydrogen from aqueous streams in biomass liquefaction*.

Potential Impacts

- The proposed work will enable efficient conversion of the corrosive and polar, carbon-containing compounds in bio-oil aqueous phase to hydrogen.
- Potential to improve the stability of the bio-oil and reduce corrosivity.
- The implementation of MEC reforming and separation unit operations being developed in this study will enable improvements in hydrogen production and overall biomass to biofuel conversion efficiency while minimizing use of natural gas and thus reducing life cycle greenhouse gas emissions.

Microbial Electrolysis

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Bioelectrochemical Conversion Technology

² Borole, A. P., Reguera, G; Ringeisen, B.; Wang, Z-W; Feng, Y.; Kim, B H; I. (2011). "Electroactive biofilms: Current status and future research needs." <u>Energy Environ. Sci. 4: 4813-4834.</u>

Proposed path: Bio-oil Aqueous Phase

14 Managed by UT-Battelle for the U.S. Department of Energy \rightarrow electrons + protons in MEC (anode)

 \rightarrow BioH₂ (cathode)

Presentation_nam

Microbial Electrolysis for converting aqueous phase generated during pyrolysis to hydrogen

- Pyrolysis derived aqueous phase
 - Potential for loss of carbon via aqueous phase
 - Emulsifies with oil phase
 - Makes bio-oil unstable (polar-non-polar separation over time)
 - Makes bio-oil corrosivity due to acids (bio-oil pH = 2.8)
- Microbial electrolysis
 - Conversion of biooil aqueous organics to hydrogen
 - Anode: Conversion of degradable organics to electrons, protons and CO₂
 - Cathode: Proton reduction to hydrogen at applied potential of 0.3-1V.
 - Develop electroactive biofilms with tolerance to inhibitory and toxic molecules in biooil aqueous phase (furfural, HMF, phenolics, etc.)

Biological hydrogen production MEC vs. Existing Technologies

	Process scheme	Theoretical yield	Observed yield	Free energy change (for H ₂ -producing step)	Overall observed energy yield	Comments
1	Hypothetical H ₂ production	12				
2	Hexose to ethanol to H ₂ via autothermal reforming	10	9.5	–265ª kJ/mole	~83%	Prohibitive catalyst (Rh) cost ¹⁰
3	Dark-light fermentation: Glucose \rightarrow acetate \rightarrow H ₂	8	7.1	+164 kJ/mole	59.2%	Limited by light penetra- tion and cost ³⁹
4	Methanogenesis-steam reforming	8	6.0	+261 kJ/mole	50.5%	Mature technology components ^{9,40}
5	MEC	12	8.2	+104.6 kJ/mol	64%	Nascent technology 3,30

^a Processes 3–5 require energy input for the hydrogen-producing step, but this step is energy yielding in process 2. While the hydrogen producing reaction is energy-yielding, energy input is required for production of ethanol from hexose.

Borole, A. P. (2011). <u>Biofuels, Bioproducts & Biorefining</u> "Improving energy efficiency and enabling water recycle in biorefineries using bioelectrochemical cells." <u>5(1): 28-36.</u>

Pyrolysis-derived water-soluble compounds

- Furfural
- Acetic acid
- Phenolics
- Vanillin
- Eugenol
- Acetol
- unknowns

17 Managed by UT-Battelle

for the U.S. Department of Energy

Carboxyl O Carboxyl O C--Carbonyl HO phenolic

Convert in MEC:

e.g., Vanillin: $C_8H_8O_3 + 13H_2O \rightarrow 17H_2 + 8CO_2.$

Many of these molecules have not been tested in MEC previously

Biomass to fuels conversion reaction (with MEC reforming included): $30 \text{ CH}_2\text{O} \text{ (biomass)} + 0 \text{ CH}_4 + 0 \text{ H}_2\text{O} + \text{kW}$ $\rightarrow \qquad C_8\text{H}_{18} + \qquad C_{12}\text{H}_{23} + 10 \text{ CO}_2 + 10 \text{ H}_2\text{O}$ (gasoline) (diesel)

Presentation_name

Analytical chemistry Bio-oil and aqueous phase analysis -Chromatography -Mass spectrometry -UV-Vis spectroscopy

H+

H+

H⁺

Cathode

 $H^+ + e^- \rightarrow H_2$

Η,

H+

> 0.3 V

Microbial

 $C_xH_vO_z \rightarrow CO_2 + H^+ + e^-$

Materials chemistry Membrane materials Electrode materials Catalyst formulation

Biology Microbiology Molecular Biology **Biocatalysis**

Electrochemistry Electrocatalysis Voltammetry Chronoamperometry Impedance spectroscopy

Engineering

Chemical Engineering Electrochemical Engineering Environmental Engineering *Life-cycle analysis*

Interdisciplinary **Components**

Handling toxic molecules in MFC/MEC

- Typical substrates
 - Hemicellulose byproducts acetic acid (deacetylation).
 - Sugar degradation products furfural, hydroxymethylfurfural
 - Lignin degradation products phenolic aldehydes and ketones and acids.
- Investigate energy recovery from acidic molecules while managing toxic compounds present in biooil aqueous phase (mechanisms).
 - Transformation of toxic molecules to non-toxic products without energy extraction
 - Mineralization of recalcitrant and inhibitory byproducts¹
- Evaluate potential for water recycle
- Applicable to fermentation-derived biorefinery wastewater stream, enabling processing high biomass loading (> 20% solids) cellulosic biochemical conversion process with water recycle.

Borole, et.al., 2009, <u>Biotechnol for Biofuels</u>., Controlling accumulation of fermentation inhibitors in biorefinery process water using Microbial Fuel Cells, April 2009, 2, 1, 7.

Approach to bioanode development

- Development of engineered bioanode systems for energy recovery – To increase current density.
- Designed novel BES systems to achieve high coulombic efficiency and current density – Engineering parameter optimization.
- Enrichment of electroactive microbial catalysts for conversion of organic acids, sugars, etc to bioenergy – Biocatalyst development.
- Assessment of limitations in bioanode performance Electrochemical Impedance Spectroscopy.
- Characterization of the microbial communities to understand the diversity of novel electrogenic organisms.
 - Microbial diversity of exoelectrogens

Borole, A. P. (2010). Microbial fuel cell with improved anode, US Patent 7,695,834. USA, UT-Battelle. US Patent 7,695,834.

Borole et.al., 2009, J. Power Sources, 191(2): 520-527...

Firmicutes Clostridiale: Anaeroarcus burkinensis Firmicutes Clostridiales naeromusa acidaminophi

Conversion of furan aldehydes and phenolic molecules in bioanode

- Demonstrated potential of bioanode to remove furfurals, phenolics, organic acids, and sugar derivatives in model aqueous streams³.
- Examine effect of concentration of toxic/ inhibitory molecules at representative concentrations (acetate 10 g/L, 2-furfural, HMF, phenolics: 1-4 g/L)
 - No detrimental effect on current production
- Near complete removal of the substrates
- Coulombic efficiency up to 64%
- Current density : up to 10 A/m2 (3700 mW/m2 power density)

Borole, et.al., 2009, **Biotechnol for Biofuels**., Controlling accumulation of fermentation inhibitors in biorefinery process water using Microbial Fuel Cells, April 2009, 2, 1, 7.

21 Managed by UT-Battelle for the U.S. Department of Energy

Electroactive Biocatalyst Characterization

- Biofilm sample from bioanode developed for model substrate mixtures (furfural, HMF, 3 phenolic compounds, acetic acid,)
- 16S rRNA analysis

Developing high performance MECs

- 2. External resistance
- 3. Redox potential
- 4. Shear rate / liquid flow rate
- 5. pH
- 6. Substrate loading
- 7. Temperature
- 8. Aerobic vs. anaerobic
- 9. Ionic strength

- 1. Electrode spacing
- 2. Presence of membrane and type of membrane
- 3. Relative anode:cathode surface area
- 4. Electrode surface area to volume ratio
- Electrode properties: conductivity, hydrophilicity, porosity, etc.
- Type of cathode (oxygen diffusion)

- 1. Source of inoculum
- 2. Pure culture vs. consortium
- 3. Gram-positive vs. Gram-negative

Biofilm parameters (Dependent variables)

- 1. Biofilm growth rate
- 2. Specific rate of electron transfer
- 3. Ability to synthesize redox-active mediators
- 4. Ability to grow nanowires and perform DET

Borole AP, Reguera G, Ringeisen B, Wang Z, Feng Y, Kim, BH, 2011, **Energy Environ. Sci**. (Review paper) <u>Electroactive Biofilms: Current Status and Future Research Needs</u>, 4:4813-4834

- 5. Relative exoelectrogen population
- 6. Characteristics of EPS layer
- 7. Extent of substrate mineralization
- 8. Substrate specificity

Stability of maximum current production

Current density increased first 30 days, thereafter, it remained ~ 35 A/m² for 20 days, but not without fluctuations.

Coulombic efficiency ranged from 50-80% (for fermentative substrates glucose + lactate)

Biooil aqueous phase analysis

Bio-oil aqueous phase characterization via HPLC

27 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Renewable Hydrogen Production from Pyrolysis Aqueous Phase Task II: Reforming of Aqueous Phase to Hydrogen using MEC

 <u>Objective</u>: Assess the biotransformation extent of specific model compounds in anodic biofilms and their contribution to hydrogen production

Renewable Hydrogen Production from Pyrolysis Aqueous Phase Task II: Reforming of Aqueous Phase to Hydrogen using MEC

Experimental Setup

A MFC maintained as stock culture to provide inoculum for MECs

Renewable Hydrogen Production from Pyrolysis Aqueous Phase Task II: Reforming of Aqueous Phase to Hydrogen using MEC

Results

Page 3

Note: The data on this slide should not be distributed, forwarded or cited.

Presented by: Spyros G. Pavlostathis and Xiaofei Zeng

Potential application in bioconversion-based

Potential in Biorefineries Using Microbial Electrolysis Cell Technology, 36, 14787–14795.

Recycle in Biorefineries Using Bioelectrochemical Cells. *5(1):28-36 (2011).*

Projected mature biorefinery scenarios

MEC Scale-up issues

- Study by J. Keller and group
 - Current: maximal 2A / cell at 400mV
 - COD removal as current:
 ≈ 0.2 kgCOD m⁻³ d⁻¹
 - Power density: 0.5 W/m² membrane area
 8.5 W/m³ reactor volume
 - · Loop operation essential for pH stability
- Low power output
- Engineering vs. Biocatalyst issues at pilot-scale
- Low coulombic efficiency
 - Presence of dissolved oxygen
 - Growth of unwanted (aerobic) biofilms
- MEC scale up
 - 1000L
 - 7.4 A/m³, 0.19 L/L-day H₂.
 - 86% methane in product

34 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_nam

Bio-oil production and aqueous phase bio-oil separation for MEC experiments from switchgrass using pyrolysis unit at UTK CRC

Bio-oil production by pilot auger pyrolysis reactor at UTK CRC

- Source: switch grass particle size: less than 2mm
- Feeding rate: 10kg/hr
- Reaction temperature: 500°C and 550°C
- Bio-oil yield: 40-50wt%, biochar: 25-30wt%, gas:20-25wt%
- The bio-oil is combined by three condensers

Pilot auger pyrolysis reactor at UTK CRC

- water in crude bio-oil to aqueous phase
- water in crude bio-oil to organic phase
- chemicals to aqueous phase
- chemicals to oganic phase

Fractions of bio-oil (wt% of crude biooil) after separation

Aqueous phase bio-oil separation

- Water: oil: 4:1
- Vigorous shaking
- Standing for overnight at 4°C
- Centrifugation:
 5000rpm/min for 30min

Note: The data on this slide should not be distributed, forwarded or cited.

Fractions of crude bio-oil (wt%) before separation

Characterization of crude and aqueous phase bio-oil

Properties of crude and aqueous phase bio-oil

Properties	Crude bio-oil	Aqueous phase bio-oil
Water content (wt%)	42.27±0.66	91.72±1.03
Total solid (wt%)	1.74±0.25	Not detected
pH value	2.84±0.07	3.02±0.01
Density (g/ml)	1.13±0.001	1.01±0.004
Ash (wt%)	0.31±0.04	0.085±0.004
Viscosity at 40 °C		
centistokes (cSt)	6.5±0.82	0.75±0.01
TAN, mg KOH/g	137.39±2.96	30.13±1.28

Major chemicals identification and quantification in aqueous phase bio-oil

Removal of Water from Bio-oil Liquid-Liquid Extraction of Bio-oil Components

Investigators: Sotira Yiacoumi and Costas Tsouris Ph.D. Student: Kyoung Eun (Lydia) Park

School of Civil and Environmental Engineering Georgia Institute of Technology

Aqueous Extraction of Bio-oil with the Centrifugal Contactor

- Bio-oil contains a significant fraction of water and water-soluble species
- The water to bio-oil volume ratio and ionic strength affect the extraction of bio-oil species

Membrane Separations-Objectives

- Removal of cellular debris in the MEC effluent.
- Evaluate impact of carryover oil, fines and contaminants in recycle water on downstream processes.
- Produce clean water for recycle to aqueous phase.
- Feed volumes from microbial reactor: <1L -10L
- Identify and develop process parameters using hollow fiber and tubular ceramic membranes- hydrophobic (PVDF) and hydrophilic (PAN) and zirconia.
- Flux stability over time, membrane fouling, back pulsing and membrane regeneration.
- Process optimization, integration, reliability and scalability.
- Obtain engineering data for scale-up and assess energy requirements.

Verification of water flux for Pall membranes

MEMBRANE	Description	Pore Size	Area (m ²)	AVG LMHB	Reported LH ⁻¹	Measured LH ⁻¹
1. AHP0013D	Polyacrylonitrile	100kD	0.017	428.75	8.5 @ 15 PSI	8.6 @ 15 PSI
2. PSP013	Polyethylene	0.1µ	0.008	1283.87	0.72 @ 1.5 PSI	0.72@ 1.5 PSI
3. USP043	PVDF	0.1µ	0.01	1984	1.5 @ 1.5 PSI	1.6@ 1.5 PSI
4. PSP003	Polyethylene	0.1µ	0.015	742	2.2 @ 1.5 PSI	2.2@ 1.5 PSI
5. P111-6	Zirconia	100 nm	0.005486	2324		16.32@ 15 PSI

Where:

- LMHB Liter/Hr-M²-bar
- LH⁻¹ Liters/Hr
- kD kilo Dalton

2 Managed by UT-Battelle for the Department of Energy

Note: The data on this slide should not be distributed, forwarded or cited.

Life Cycle Assessment Defined

Raw material and energy consumption

Simplified Mass Balance

Life Cycle Inventory

Sample Life Cycle Impact Assessment Calculation

Global Warming Potential

Corresponding characterization factors				
	GWP equiv.			
	factor	LCI Result	LCIA Result	
Carbon dioxide	1	2000	2000	
Methane	21	15	315	
Nitrous Oxide	310	0.1	31	
Total Pote	2346			

Sample Comparative Results

STRATEGIC, SUSTAINABLE,

