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Outline 
• Background 

– Biomass pyrolysis process 
– Need for Hydrogen 
– Potential impact on efficiency of biofuel production 
– Potential impact on greenhouse gas emissions and sustainability 

• Objectives 
• Project tasks 
• Team members 
• Microbial Electrolysis 
• Bio-oil production, oil-water separation, downstream 

membrane separations, LCA analysis. 
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Fast pyrolysis-based biofuel 
production 

Gasoline, diesel 

Ref: Biomass Multi-year Program Plan 
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Fast Pyrolysis Process  
Flow Diagram  

Biomass: C5H7O2N →  gasoline (C8H18), diesel (C12H23) 

Needs significant amount of hydrogen 

Ref: Jones et al., Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and 
hydrocracking: A design case.; PNNL-18284 Rev.1; Pacific Northwest National Laboratory: 2009  
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Hydrogen production from natural gas 

• Natural gas 
– Steam-Reforming Reactions 

Methane: 
CH4 + H2O (+ heat) → CO + 3H2 

• Producer gas from pyrolysis 
– Water-Gas Shift Reaction 

CO + H2O → CO2 + H2 (+ small amount of heat) 

T = 700-1000°C 
P = 3-25 bar 
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Hydrogen Efficiency and Process yields 

The energy content of 
the fuel product depends 
significantly on natural 
gas  input (26-40% of 
energy input) 
 
 

 
 

Energy  balance 
74% 
26% 

19% 
31% 
49% 

51% 

Biooil characterization Fuel product characterization 

                         Carbon balance Energy balance 

loss 

Yield 

Ref: Jones et al., Production of gasoline and diesel from biomass via fast 
pyrolysis, hydrotreating and hydrocracking: A design case.; PNNL-18284 
Rev.1; Pacific Northwest National Laboratory: 2009  

ORNL preliminary energy balance 

Note: The data on this slide should not 
be distributed, forwarded or cited. 
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Other issues 

• Problems 
– Stability of biooil (polar-non-polar separation over time) 
– Corrosivity due to acids (biooil pH = 2.8) 
– Biooil and fuel yield (biomass basis) 
– Loss of carbon to aqueous phase 

 

Phenolic acids 
 
 

Acetic acid 
CH3COOH 

CHASE program: 
Carbon, hydrogen and separations efficiency improvement. 
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Microbial 
Electrolysis 

Biomass 

Electrons 

Bio-oil Upgrading  
and 

Hydrotreatment 

Hydrocarbon 
fuels 

Pyrolysis 

Hydrogen 

Oil phase 

Aqueous 
Phase 

Bio-oil 

Schematic of the biomass to biofuel 
process with modifications to enable 
improvement in hydrogen efficiency 

Project Outline 

Note: The information on this slide should 
not be distributed, forwarded or cited. 

http://www.best-home-alternative-energy.com/
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Focus: Hydrogen 
 

 Is there an alternate way to meet the objectives without using natural gas? 
 Oil stabilization 
 Upgrading to gasoline/diesel fuels 
 Reducing cost of hydrogen 

Hydrogen production expenses: 
Capital costs: 28% for natural gas 
reformer 
Operating Expenses: 16% for 
natural gas 
 
Minimizing natural gas use has 
potential to minimize operating 
expenses, while meeting GHG 
emission goals to meet Renewable 
fuel standard (RFS). 

Ref: Biomass Multi-year Program Plan 
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Project objectives 
 

• Develop reforming process for efficient conversion of 
aqueous phase organics to hydrogen via microbial 
electrolysis. 

• Develop energy-efficient methods to separate bio-oil aqueous phase, 
extract acidic and polar compounds from bio-oil for production of 
hydrogen. 

• Demonstrate improvement in hydrogen efficiency via mass and 
energy balance. 

• Demonstrate potential for reduction in life cycle greenhouse gas 
emissions via life-cycle analysis. 

Address Technical Area 2: Hydrogen Efficiency,  
Subtopic: Reforming hydrogen from aqueous streams in biomass 
liquefaction.  
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Potential Impacts  

• The proposed work will enable efficient conversion of the 
corrosive and polar, carbon-containing compounds in bio-oil 
aqueous phase to hydrogen.  

• Potential to improve the stability of the bio-oil and reduce 
corrosivity.  

• The implementation of MEC reforming and separation unit 
operations being developed in this study will enable 
improvements in hydrogen production and overall biomass 
to biofuel conversion efficiency while minimizing use of 
natural gas and thus reducing life cycle greenhouse gas 
emissions. 
 
 



Microbial 
Electrolysis 
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Bioelectrochemical Conversion Technology 

2 Borole, A. P., Reguera, G; Ringeisen, B.;  Wang, Z-W; Feng, Y.; Kim, B H; l. (2011). "Electroactive biofilms: Current status 
and future research needs.“  Energy Environ. Sci. 4: 4813-4834. 
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MFC   Oxygen  Electricity 
MEC   Protons  Biohydrogen 
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BES   Oxygen  Hydrogen peroxide 
BES   Carbon dioxide Electrofuels 
BES    other/sunlight  Photo/biofuels 

Proposed path: Bio-oil Aqueous Phase 
   → electrons + protons in MEC (anode ) 
     → BioH2 (cathode) 
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Microbial Electrolysis for converting 
aqueous phase generated during 
pyrolysis to hydrogen 

• Pyrolysis derived aqueous phase  
– Potential for loss of carbon via aqueous phase 
– Emulsifies with oil phase 
– Makes bio-oil unstable (polar-non-polar separation over 

time) 
– Makes bio-oil corrosivity due to acids (bio-oil pH = 2.8) 

• Microbial electrolysis 
– Conversion of biooil aqueous organics to hydrogen 
– Anode: Conversion of degradable organics to electrons, 

protons and CO2  

– Cathode: Proton reduction to hydrogen at applied 
potential of 0.3-1V. 

– Develop electroactive biofilms with tolerance to inhibitory 
and toxic molecules in biooil aqueous phase (furfural, 
HMF, phenolics, etc.) 
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Biological hydrogen production 
 MEC vs. Existing Technologies 

Borole, A. P. (2011). Biofuels, Bioproducts & Biorefining "Improving energy efficiency and enabling water recycle in 
biorefineries using bioelectrochemical cells." 5(1): 28-36. 
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Pyrolysis-derived water-soluble 
compounds 

• Furfural 

• Acetic acid 

• Phenolics 

• Vanillin 

• Eugenol 

• Acetol 

• unknowns 

Convert in MEC: 
e.g., Vanillin: 
C8H8O3 + 13H2O →  17H2 + 8CO2. 
 
 

Biomass to fuels conversion reaction (with MEC reforming included): 
30 CH2O (biomass) + 0 CH4 + 0 H2O + kW  
  →  C8H18     + C12H23 + 10 CO2 + 10 H2O 
   (gasoline)    (diesel) 

Many of these molecules have not 
been tested in MEC previously 

Note: The data on this slide should not 
be distributed, forwarded or cited. 

http://en.wikipedia.org/wiki/File:Vanillin2.svg
http://en.wikipedia.org/wiki/File:Eugenol_acsv.svg
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Microbial 
Electrolysis 
Cell 

Biology 
  Microbiology 
  Molecular Biology 
  Biocatalysis 

Engineering 
  Chemical Engineering 
  Electrochemical Engineering 
  Environmental Engineering 
  Life-cycle analysis 

Electrochemistry 
  Electrocatalysis 
  Voltammetry 
  Chronoamperometry 
  Impedance spectroscopy 

Materials chemistry 
  Membrane materials 
  Electrode materials 
  Catalyst formulation 

Analytical chemistry 
  Bio-oil and aqueous phase       
 analysis 
   -Chromatography 
   -Mass spectrometry 
   -UV-Vis spectroscopy 

Interdisciplinary  
Components 
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Handling toxic molecules in MFC/MEC 
• Typical substrates 

– Hemicellulose byproducts  - acetic acid (deacetylation). 

– Sugar degradation products – furfural, hydroxymethylfurfural 

– Lignin degradation products – phenolic aldehydes and ketones and acids. 

• Investigate energy recovery from acidic molecules while managing toxic 
compounds present in biooil aqueous phase (mechanisms).  

• Transformation of toxic molecules to non-toxic products without energy extraction 

• Mineralization of recalcitrant and inhibitory byproducts 1 

• Evaluate potential for water recycle 

• Applicable to fermentation-derived biorefinery wastewater stream, enabling 
processing high biomass loading (> 20% solids) cellulosic biochemical 
conversion process with water recycle. 

Borole, et.al., 2009, Biotechnol for Biofuels., Controlling accumulation of fermentation inhibitors in biorefinery 
process water using Microbial Fuel Cells, April 2009, 2, 1, 7. 
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Approach to bioanode 
development 
• Development of engineered bioanode systems for energy 

recovery – To increase current density. 

• Designed novel BES systems to achieve high coulombic 
efficiency and current density – Engineering parameter 
optimization. 

• Enrichment of electroactive microbial catalysts for conversion 
of organic acids, sugars, etc to bioenergy – Biocatalyst 
development. 

• Assessment of limitations in bioanode performance – 
Electrochemical Impedance Spectroscopy. 

• Characterization of the microbial communities to understand 
the diversity of novel electrogenic organisms.  

– Microbial diversity of exoelectrogens 

Borole, A. P. (2010). Microbial fuel cell with improved anode, US Patent 7,695,834. USA, 
UT-Battelle. US Patent 7,695,834.  

Borole et.al., 2009, J. Power Sources, 191(2): 520-527.. 
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Conversion of furan aldehydes and phenolic 
molecules in bioanode 

– Demonstrated potential of bioanode to 
remove furfurals, phenolics, organic 
acids, and sugar derivatives in model 
aqueous streams3. 

– Examine effect of concentration of toxic/ 
inhibitory molecules at representative 
concentrations (acetate 10 g/L, 2-furfural, 
HMF, phenolics: 1-4 g/L)  
• No detrimental effect on current production 

– Near complete removal of the substrates 
– Coulombic efficiency up to 64% 
– Current density : up to 10 A/m2 (3700 

mW/m2 power density) 
 

Borole, et.al., 2009, Biotechnol for Biofuels., Controlling 
accumulation of fermentation inhibitors in biorefinery 
process water using Microbial Fuel Cells, April 2009, 2, 1, 7. 
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Electroactive Biocatalyst 
Characterization 
• Biofilm sample from bioanode developed for model substrate mixtures 

(furfural, HMF, 3 phenolic compounds, acetic acid, ) 
• 16S rRNA analysis 

14%

19%

9%

50%

6% 2%

Alphaproteobacteria 

Betaproteobacteria
Rhodocyclaceae
Betaproteobacteria
Burkholderiaceae
Deltaproteobacteria
Desulfovibrio
Gammaproteobacteria 

Firmicutes Anaerofilum

http://www.biotechnologyforbiofuels.com/about/access/
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Developing high performance MECs 



Process/ 
Operating 
parameters 

  

Biological 
parameters 

Electroactive  
Biofilm Optimization 

1. Batch vs. flow 
system 

2. External 
resistance 

3. Redox potential 
4. Shear rate / liquid 

flow rate 
5. pH 
6. Substrate loading 
7. Temperature 
8. Aerobic vs. 

anaerobic 
9. Ionic strength 

 

1. Electrode spacing 
2. Presence of 

membrane and type 
of membrane 

3. Relative 
anode:cathode 
surface area 

4. Electrode surface 
area to volume ratio 

5. Electrode properties: 
conductivity, 
hydrophilicity, 
porosity, etc. 

6. Type of cathode 
(oxygen diffusion) 

1. Source of inoculum 
2. Pure culture vs. consortium 

3. Gram-positive vs. Gram-negative 
Biofilm parameters (Dependent  variables) 

 1. Biofilm growth rate 
2. Specific rate of electron transfer 
3. Ability to synthesize redox-active mediators  
4. Ability to grow nanowires and perform DET 
 

System design 
parameters 

5. Relative exoelectrogen population 
6. Characteristics of EPS layer 
7. Extent of substrate mineralization  
8. Substrate specificity  
 Borole AP, Reguera G, Ringeisen B, Wang Z, Feng Y, Kim, BH, 2011, Energy Environ. Sci. (Review paper) 

Electroactive Biofilms: Current Status and Future Research Needs, 4:4813-4834 
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Stability of maximum current production 

Current density increased first 30 days, thereafter, it remained ~ 35 A/m2 for 20 days, but not without 
fluctuations. 
Coulombic efficiency ranged from 50-80% (for fermentative substrates glucose + lactate) 
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Note: The data on this slide should not 
be distributed, forwarded or cited. 
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Biooil aqueous phase analysis 

Bio-oil aqueous phase characterization via HPLC 

Note: The data on this slide should not 
be distributed, forwarded or cited. 
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Renewable Hydrogen Production from Pyrolysis Aqueous Phase  
Task II: Reforming of Aqueous Phase to Hydrogen using MEC 

• Objective: Assess the biotransformation extent of specific model 
compounds in anodic biofilms and their contribution to hydrogen 
production 

H2 

MEC 

Biofuels 

Hydrogenation 

Oil Phase 

Aqueous Phase 

Page 1 
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• Experimental Setup  

Page 2 

Renewable Hydrogen Production from Pyrolysis Aqueous Phase  
Task II: Reforming of Aqueous Phase to Hydrogen using MEC 

A MFC maintained as stock culture 
to provide inoculum for MECs  

MFC 

Furan Compounds 

Phenolic Compounds 

Model Compounds MEC 
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• Results 

Page 3 

Renewable Hydrogen Production from Pyrolysis Aqueous Phase  
Task II: Reforming of Aqueous Phase to Hydrogen using MEC 
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On-going Work 

1. Startup of MEC 
2. Bioconversion of furan 

and phenolic compounds 
in separate MFCs 

3. Biotransformation 
pathways of model 
compounds 
 

Note: The data on this slide should not 
be distributed, forwarded or cited. 
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Potential application in bioconversion-based 
biorefinery 

Estimated Energy production 
Electricity production = 2.5 MW (MFC) or 
 7000 m3/hr H2 (MEC) 
~ 25% of total power needs for a biorefinery targeting 70 
millions gallons ethanol/year. 

Borole, A. P. US Patent, (2012). Microbial fuel cell treatment of ethanol fermentation 
process water, UT-Battelle, LLC. 
Borole AP, Mielenz J, Intl J Hydrogen Energy, 2011, Estimating Hydrogen Production 
Potential in Biorefineries Using Microbial Electrolysis Cell Technology, 36, 14787–14795. 
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Legend 
 

Green ovals indicate percent water content of the process stream in the flowsheet 

Teal boxes show energy content of each stream as percent of total energy  
in (i.e., biomass) throughout the process 

     Yellow shapes indicate energy/water loss from the existing process stream,  
which can be minimized using MECs. 

Product streams showing energy content as fraction of total energy in (Biomass) 
 in the process reported by NREL 
Heat loss paths in the process reported by NREL 

7.4% 

Potential for improvement in energy efficiency and  
ability to recycle water using MECs. 

Borole AP, Biofuels, Bioproducts & Biorefining, Improving Energy Efficiency and Enabling Water 
Recycle in Biorefineries Using Bioelectrochemical Cells.  5(1):28-36 (2011). 
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Projected mature biorefinery scenarios 

AFEX pretreatment  
+ 
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Borole AP, Biofuels, Bioproducts & Biorefining, Improving energy 
efficiency and enabling water recycle in biorefineries using 
bioelectrochemical cells., 5(1):28-36 (2011). 

Laser, et al., 2009, Biofuels, Bioproducts & Biorefining 
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MEC Scale-up issues  

• Study by J. Keller and group 

 

 

 

 

• Low power output 

• Engineering vs. Biocatalyst issues at 
pilot-scale 

• Low coulombic efficiency 
– Presence of dissolved oxygen 
– Growth of unwanted (aerobic) biofilms 

• MEC scale up 
– 1000L 
– 7.4 A/m3, 0.19 L/L-day H2. 
– 86% methane in product 

 
Borole, AP; US Patent 7,695,834, April 2010. 
Microbial fuel cell with improved anode. 



Bio-oil production and aqueous phase bio-oil separation for MEC 
experiments from switchgrass using pyrolysis unit at UTK CRC 

Bio-oil production by pilot auger pyrolysis reactor at UTK CRC 

• Source: switch grass particle size: less than 2mm 
• Feeding rate: 10kg/hr  
• Reaction temperature: 500°C and 550°C 
• Bio-oil yield: 40-50wt%, biochar: 25-30wt%, 

gas:20-25wt% 
• The bio-oil is combined by three condensers 

Aqueous phase bio-oil separation 

• Water: oil: 4:1 
• Vigorous shaking 
• Standing for overnight at 

4°C 
• Centrifugation: 

5000rpm/min for 30min 
Fractions of bio-oil (wt% of crude bio-
oil) after separation 

Pilot auger pyrolysis reactor at UTK CRC 
   

36.7% 

5.5% 

35.1% 

22.6% 

water in crude bio-oil to aqueous phase
water in crude bio-oil to organic phase
chemicals to aqueous phase
chemicals to oganic phase

Fractions of crude  bio-oil (wt%) before 
separation 

42.27% 

55.68% 

1.74% 0.31% 

Water Chemicals Solids Ash

Note: The data on this slide should not be 
distributed, forwarded or cited. 



Characterization of crude and aqueous phase bio-oil 
Properties of crude and aqueous phase bio-oil 

Properties Crude bio-oil Aqueous phase bio-oil 

Water content (wt%)  42.27±0.66 91.72±1.03 

Total solid (wt%) 1.74±0.25 Not detected 

pH value 2.84±0.07 3.02±0.01 

Density (g/ml) 1.13±0.001 1.01±0.004 

Ash (wt%) 0.31±0.04 0.085±0.004 
Viscosity at 40 °C 

centistokes (cSt) 6.5±0.82 0.75±0.01 

TAN, mg KOH/g 137.39±2.96 30.13±1.28 

Major chemicals identification and quantification in aqueous phase bio-oil 

Aqueous phase 

Chemicals extracted 
by organic solvent 

Organic solvent extraction 

GC/MS 

chemicals identification  chemicals Quantification 

Aqueous phase 

GC HPLC 

Most volatiles: 
Aldehydes, 
ketones, lignin 

Acids and sugars 

Note: The data on this slide should not be 
distributed, forwarded or cited. 



Removal of Water from Bio-oil 
Liquid-Liquid Extraction of Bio-oil Components 

 

Investigators: Sotira Yiacoumi and Costas Tsouris 
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Aqueous Extraction of Bio-oil with the Centrifugal 
Contactor 



Options for Solvent Extraction of Bio-oil 

Aqueous Phase 
Organic  Phase  

MEC for H2 
production 
Fuel 

Extraction Options  

Sequential Extraction 

Simultaneous Extraction 

Extraction Parameters: Solvent type, pH, ionic strength, volume ratio, etc.  

Volume ratio 
   1:1         4:1 

NaCl (Ionic strength) (M) 
0.001      0.01       0.1           1 

Microbial growth media  
(phosphate buffer) 
         DI         ¼         ½          1 

‒ Bio-oil contains a significant fraction of water and water-soluble species 
‒ The water to bio-oil volume ratio and ionic strength affect the extraction of bio-oil species  

Measurements: Partitioning, pH, conductivity, chemical composition 

Batch experiments to determine range of parameters: 

Aqueous 
solutions 
after 
extraction 

Note: The data on this slide 
should not be distributed, 
forwarded or cited. 
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Membrane Separations-Objectives 
 • Removal of cellular debris in the MEC effluent. 

• Evaluate impact of carryover oil, fines and contaminants in 
recycle water on downstream processes. 

• Produce clean water for recycle to aqueous phase. 

• Feed volumes from microbial reactor: <1L -10L  

• Identify and develop process parameters using hollow fiber 
and tubular ceramic membranes- hydrophobic (PVDF) and 
hydrophilic (PAN) and zirconia. 

• Flux stability over time, membrane fouling, back pulsing 
and membrane regeneration. 

• Process optimization, integration, reliability and scalability. 

• Obtain engineering data for scale-up and assess energy 
requirements.   
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Verification of water flux for Pall membranes  

Note: The data on this slide should 
not be distributed, forwarded or 
cited. 



Life Cycle Assessment Defined

Cradle-to-Grave Product System Boundary

Raw material and energy consumption

Emissions to air, water and soils

Raw
Material

Raw
Material

ProductionProduction UseUse End of LifeEnd of Life



Simplified Mass Balance

Process or 

Operation

Product(s)

Liquid waste

Sewer/Floor Drains

Chemicals

Process Aids

Cleaning Agents

Emissions 
(Internal/External)

Raw Materials



Balance sheet of 
environmental inflows and 
outflows

Sample list

Life Cycle Inventory



Sample Life Cycle Impact Assessment 
Calculation

Global Warming Potential

Corresponding 
characterization 

factors

GWP equiv. 
factor LCI Result LCIA Result

Carbon dioxide 1 2000 2000
Methane 21 15 315
Nitrous Oxide 310 0.1 31

Total Potential GWP (CO2-eq) --> 2346
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Assessing Environmental Performance
of Soy vs. Petroleum Polyols
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Sample Comparative Results
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